A Course in Abstract Algebra
Designed for undergraduate and postgraduate students of mathematics, the book can also be used by those preparing for various competitive examinations. The text starts with a brief introduction to results from Set theory and Number theory. It then goes on to cover Groups, Rings, Fields and Linear Algebra. The topics under groups include subgroups, normal subgroups, finitely generated abelian groups, group actions, solvable and nilpotent groups. The course in ring theory covers ideals, embedding of rings, Euclidean domains, PIDs, UFDs, polynomial rings, Noetherian (Artinian) rings. Topics of fields include algebraic extensions, splitting fields, normal extensions, separable extensions, algebraically closed fields, Galois extensions, and construction by ruler and compass. The portion on linear algebra deals with Vector spaces, linear transformations, eigen spaces, diagonalizable operators, inner product spaces, dual spaces, operators on inner product spaces etc. The theory has been strongly supported by numerous examples and worked-out problems. There is also plenty of scope for the readers to try and solve problems on their own.
Get it now and save 10%
BECOME A MEMBER
Bibliographic information
S. K. Bhambri